# Relevance of Indigenous Knowledge based Abiotic Indicators in Rainfall Prediction by Farmers of North Karnataka

Bheemappa A.<sup>1</sup>, S. M. Shruthi<sup>2</sup>, K. D. Maheshwari<sup>3</sup> and Nagaratna Biradar<sup>4</sup>
1. Professor and Head, Department of Agricultural Extension Education, College of Agriculture University of Agricultural Sciences, Dharwad 580005, Karnataka, India
2. & 3. Senior Research Fellows (SRF) and 4. Principal Scientist (Agricultural Extension) ICAR-Indian Grassland and Fodder Research Institute, Southern Regional Research Station, Dharwad, Karnataka *Corresponding author's e-mail: bheemappaa@uasd.in*

## ABSTRACT

Farmers are very astute weather watchers and are quick to recognize weather that is either favorable or unfavorable to their production systems. The rural communities are likely to continue relying on their traditional methods of forecasting weather, which they claim to be important and reliable since the localized weather forecasting is normally not made available in the official weather forecasts. The paper presents 39 abiotic indicators used by farmers of north Karnataka based on appearance and movement of clouds, direction of winds, appearance and position of the sun and the moon, occurrence of rainbow, lightening, thunder and eclipse, and appearance of sky for forecasting rainfall. The associated rainfall predictions of these indicators, their awareness and relevance was measured in the selected three districts of north Karnataka as part of research project implemented for developing climate resilient adaptive strategies for empowering farmers. The study observed that majority of farmers in Gadag (89.74%) and Belgaum (89.74%) and Uttara Kannada district (66.66%) were noticed in medium to high category of awareness, and nearly 80.00 per cent of the abiotic indicators were rated in high to very high relevancy indices.

Key words: Awareness, Karnataka, Rainfall prediction, Relevance, Traditional knowledge

### INTRODUCTION

Indian economy is mostly agrarian based (around 70.00 per cent of the population earns its livelihood from agriculture) having 67.00 per cent of country's net sown area under rainfed accounts for 44 per cent of the total food production. Similarly, Karnataka state in India is a predominantly agricultural state with 65.00 per cent of cultivated area under rainfed spread over varied topographical character ranging from coastal plains to gentle slopes and the heights of the Western Ghats. Hence, success of rainfed predominant agricultural activities is closely related to occurrence of rainfall which makes rainfall forecasting indispensable to farmers.

Since time immemorial farmers in India have been using astrology, study of clouds (sky features), direction of winds, position of the sun and the moon for forecasting of rain (Galacgac *et al.* 2009: Sivaprakasam *et al.* 2009). Above all, the accuracy of rainfall prediction dependent upon the correct interpretation of indicators developed through experience, skills and insights of people over generations (Anju and Bony, 2019). Despite the methods of modern technology farmers tend to use a combination of meteorological information and indigenous knowledge in their seasonal forecasting, as they primarily rely on indigenous knowledge but are also open to receiving scientific forecasts (Kolawole *et al.* 2014, Mapfumoa *et al.* 2015, Orlove *et al.* 2010, Roudier *et al.* 2014).

In view of this, farmers believe that indigenous knowledge of seasonal rainfall forecasting could be useful in decision making at village level to best exploit the seasonal distribution of rainfall. Thus, record of methods used to forecast rainfall in local communities is important since it addresses the needs for a particular community.

Hence, traditional methods of rainfall forecasting has the potential of being utilized for making modern weather related predictions more robust and effective but if not documented this rich knowledge of the people is likely to be lost forever. Keeping this in view, the study is designed to explore the indigenous knowledge based abiotic factors in rainfall prediction with related rainfall forecasting.

#### METHODOLOGY

The study was conducted during 2019-2020 in the selected three districts of Karnataka (India) Gadag (North latitudes of 15° 15' and 15°45' and East longitudes of 75° 20' and 75° 47'), Belgaum (North latitudes of 15º 23' and 16º 58' and East longitudes of  $74^{\circ}~05'$  and  $75^{\circ}~28'$  ) and Uttara Kannada (North latitude 13° 52' and 15° 31', East longitude 74° 09' and 75° 10') spread over two agro-climatic situations viz., Northern Dry Zone and Coastal Zone. From these selected districts the study area was demarcated based on the criteria of most vulnerability to climate change by considering more than 19 per cent rainfall deficit for the past 30 years rainfall data. Accordingly, villages Inamhongala, Asundi, Hosalli and Shyagoti in the Northern Dry Zone and in Coastal Zone Halavalli, Dongri and Kalleshwar villages were selected.

By employing exploratory research method the study made an intensive effort to discuss with age old and experienced farmers for detailed analysis of traditional knowledge based abiotic factors of rainfall prediction. Thus, 39 abiotic factors of rainfall prediction were finalized with associated rainfall predictions. Further, by following simple random technique and also considering the extent of involvement of farmers 90 farmers each from Gadag and Belgaum districts of Northern Dry Zone and 60 farmers from Uttara Kannada district of Coastal Zone were selected.

In the course of research, the finalized list of abiotic factors was used for measuring the awareness and relevance by the sample farmers. The awareness of the indicators were quantified over completely aware, partially aware and not aware continuum with the assigned weightages of 1, 0.5 and 0, respectively. Similarly, relevance of the indicators were quantified over the response continuum highly relevant, relevant, somewhat relevant, irrelevant and highly irrelevant with weightages of 5, 4, 3, 2, and 1, respectively. Finally elicited response was analyzed using frequency, percentage and mean index scores.

### **RESULTS AND DISCUSSION**

In the study, the finalized 39 abiotic indicators with their associated rainfall forecasting (Table 1) and the summarized grouping of indicators (Fig. 1) brings to focus the highest percent of indictors were observed under type and movement of clouds (35.90%), followed by appearance and position of the sun and the moon (12.82%), occurrence of rainbow (12.82%), type and direction of winds (10.26%), and lightening (7.69%), appearance of sky (7.69%), atmospheric temperature (7.69%) and occurrence of thunder (2.56%) and eclipse (2.56%).



Fig.2- Abiotic indicators of rainfall prediction

The data in Ttable 2 depicts the distribution of farmers of Gadag, Belgaum and Uttara kannada districts in the mean awareness index of abiotic factors of rainfall prediction. The F-test results revealed that farmers in the study area differs with respect to awareness of abiotic factors of rainfall prediction. Further, grouping of indicators in the classified awareness categories (Table 3) highlight that more percent of indicators in high category of awareness has been observed in Gadag (48.72%) and Belgaum (58.97%) as compared to Uttara Kannada district (7.69%) was also found to support the results. This was due to the fact that farmers of Uttara Kannada district were not sure of observing the listed indicators because of their geographical location comes under low laying area and also surrounded by ghat section.

Further, the abiotic indicators were subjected to relevancy test by the farmers. The results presented in Table 4 brings to focus that relevancy of the indicators does not differs amongst the farmers of all the districts. This shows that established trustworthiness of traditional knowledge. The groupings of indicators under relevancy categories (Table 5) substantiates that nearly 80.00 per cent of abiotic indicators were rated in high to very high relevancy indices.

#### CONCLUSION

The traditional methods of rainfall forecasting may be riddle with inaccuracies but they cannot be ignored altogether as evidenced in the study that majority of farmers were aware of them and have shown their high relevance. Thus the present study was aimed to open an insight into indigenous knowledge based abiotic indicators of rainfall prediction which need to explored for rationalizing and test verifying them to produce more reliable and accurate forecasts for the farming community. The study does not deal with the comparison of scientific weather forecasting with indigenous forecasting or their integration in future to help diverse communities and hence, possible integration could be essential for the further study.

### ACKNOWLEDGMENT

The authors wish to express gratitude to Indian Council of Agricultural Research, New Delhi, for providing funding and support under National Agricultural Science Fund project for developing climate resilient adaptive strategies in Karnataka. The authors would like to pay their gratitude to the farmers for sharing their wisdom and also thankful for other farmers cooperated during data collection.

| Codes | Identified Abiotic indicators in the study area                 | Associated rainfall        | Reported past research          |
|-------|-----------------------------------------------------------------|----------------------------|---------------------------------|
| ٨     | Delini constallation (25th Mars 7th Land)                       | Orest of S. Warsenson      | Studies                         |
| A     | Rommi constenation (25 <sup>th</sup> May -7 <sup>th</sup> June) | Onset of 5-w monsoon       | Kanani anu Pastakia 1999,       |
|       |                                                                 |                            | Ravi Shankar et al. 2008.       |
| В     | Halo around the sun and moon                                    | Rain follows (short range) | Ravi Shankar <i>et al.</i> 2008 |
|       |                                                                 |                            | Chhabra et al. 2014             |
|       |                                                                 |                            | Shoko and Shoko 2017            |
| С     | Smaller the halo around the moon                                | Farther is the rain        | Chhabra et al. 2014             |
|       |                                                                 |                            | Shoko and Shoko 2017            |
|       |                                                                 |                            | Rengalakshmi Raj 2011           |
| D     | Moon surrounded by moisture (profuse halo)                      | Indication of good rain    | Netshiukhwi et al. 2013         |
| Е     | Appearance of full and shining moon                             | No rain                    | Mbewe <i>et al.</i> 2019        |
| F     | Ring around the sun and moon caused by light                    | Rainfall within the next   | Rautela and Karki 2015          |
|       | shining through sheet like high level clouds                    | two to three days          | Ravi Shankar et al. 2008        |
| G     | Red /pink clouds in the morning                                 | Possibility of rain        | Rautela and Karki 2015          |
|       |                                                                 | -                          | Ravi Shankar <i>et al.</i> 2008 |
| Н     | Red /pink clouds in the evening                                 | No rain                    | Rautela and Karki 2015          |
|       |                                                                 |                            | Ravi Shankar et al. 2008        |
| Ι     | Black clouds with no stars                                      | Brings good rain           | Rengalakshmi Raj 2011           |
| J     | Movement of clouds in a group from east to west                 | Rain in next 2 days        | Rengalakshmi Raj 2011           |
|       | during cyclone                                                  |                            |                                 |

 Table 1

 Identified indigenous knowledge based abiotic factors and their associated rainfall prediction

| Codes | Identified Abiotic indicators in the study area | Associated rainfall          | Reported past research                          |
|-------|-------------------------------------------------|------------------------------|-------------------------------------------------|
| L.    | Daula walling a law da awith 11                 | prediction by the farmers    | Studies                                         |
| ĸ     | Dark rolling clouds with cool breeze            | Heavy rainfall               | Ravi Shankar et al. 2008,                       |
|       |                                                 |                              | Anju and bony 2019,<br>Notobiukhuri at al. 2012 |
|       |                                                 |                              | Poutola and Karki 2015                          |
| Т     | Stationary clouds during transition phase from  | Localized rains up to few    | Pavi Shankar et al. 2008                        |
| L     | S-W to N-E monsoon                              | hundred square km (short     | Ravi Shankai et al. 2006                        |
|       |                                                 | range)                       |                                                 |
| М     | Clouds with vertical development with           | Heavy rainfall               | Aniu and Bony 2019                              |
| 111   | thunderstorm and lightning                      | Ticavy failmain              | Anju and bony 2015                              |
| N     | Overlapping clouds                              | Gives rain (short range)     | Ravi Shankar <i>et al.</i> 2008                 |
| 0     | Low clouds moving opposite direction            | Cives rain (short range)     | Ravi Shankar et al. 2000                        |
| P     | Clouds movement at right angles to each other   | Possibility of heavy rain    | Ravi Shankar et al. 2008                        |
| -     | ciouds movement at right angles to cach other   | (short range)                |                                                 |
| 0     | Small streaks in the clouds                     | Expect rain in another 2     | Rengalakshmi Rai 2011                           |
| 4     | Sintai Streaks in the clouds                    | davs                         |                                                 |
| R     | Appearance of red colored lower clouds and      | Expect rain in another 2     | Rengalakshmi Rai 2011                           |
| 10    | black clouds at the top during evening          | davs                         |                                                 |
| S     | Presence of water vapor and warm clouds         | Possibility of occurrence of | Ravi Shankar <i>et al.</i> 2008                 |
| _     |                                                 | rain                         |                                                 |
|       |                                                 |                              |                                                 |
| Т     | Day time increase in temperature during rainy   | Triggering of rainfall       | Anju and Bony 2019,                             |
|       | season                                          |                              | Mbewe et al. 2019,                              |
|       |                                                 |                              | Risiro et al. 2012                              |
| U     | Very hot and humid conditions in summer         | Signify good chance of       | Ravi Shankar <i>et al.</i> 2008                 |
|       |                                                 | thunderstorms in rainy       | Shoko and Shoko 2017                            |
|       |                                                 | season                       |                                                 |
| V     | Low temperature at night                        | Late onset of rain           | Ravi Shankar et al. 2008,                       |
|       |                                                 |                              | Netshiukhwi <i>et al.</i> 2013                  |
| W     | Rainbow in the west during S-W monsoon          | Onset of S-W monsoon         | Ravi Shankar et al. 2008                        |
|       |                                                 | (short range)                | Anju and Bony 2019                              |
| Х     | Occurrence of red dominating rainbow            | More rain to come (June-     | Netshiukhwi et al. 2013                         |
|       |                                                 | July)                        |                                                 |
| Y     | Rainbow appears in the east in the evening or   | It will rain on that day     | TNAU portal                                     |
|       | west in the morning                             |                              |                                                 |
| Z     | Rainbow in the sunny weather                    | No further rainfall          | Ravi Shankar <i>et al.</i> 2008                 |
| AA    | Appearance of rainbow during sunsets            | Indicates rain is likely to  | TNAU portal                                     |
|       |                                                 | fall in 3-4 days             | Santosh and Chhetry 2012                        |
| AB    | Rainbow in the east direction                   | Less rainfall/ absence of    | Anju and Bony 2019                              |
|       |                                                 | rainfall                     |                                                 |
| AC    | Lightening in S-W during N-E monsoon            | Indicative of rain (short    | Ravi Shankar <i>et al.</i> 2008                 |
|       |                                                 | range)                       |                                                 |
| AD    | Lightening in the N-E before onset of S-W       | Indication of good rains     | Ravi Shankar <i>et al.</i> 2008                 |
|       | monsoon                                         |                              |                                                 |
| AE    | Lightning in the east                           | Onset of rains after a gap   | Rengalakshmi Raj 2011, Ravi                     |
|       |                                                 | of 7-8 hours                 | Shankar et al. 2008                             |
| AF    | Wind blowing from east                          | Commencement of              | Ravi Shankar <i>et al.</i> 2008                 |
|       |                                                 | monsoon                      |                                                 |
| AG    | Wind in criss-cross direction after the         | Give continuous heavy        | Ravi Shankar et al. 2008                        |
|       | commencement of rain                            | rain (short rain)            | Didal et al. 2017                               |
| AH    | Occurrence of cool breeze with moisture         | Indicates occurrence of      | Anju and Bony 2019                              |
|       |                                                 | heavy rain (short range)     |                                                 |
| AI    | Warm breeze in February-March                   | Upcoming rain                | Anju and Bony 2019                              |
| AJ    | Less thunder sequence                           | Gives rain (short range)     | Ravi Shankar et al. 2008                        |
| AK    | Reddish yellow sky                              | Rain will be far away        | Rautela and Karki,2015                          |
|       |                                                 |                              | Chnabra et al. 2014                             |
| AL    | Occurrence of dark sky near the horizon         | Instant rain                 | Ravi Shankar et al. 2008                        |
| AM    | The occurrence of an eclipse                    | Ennance chances of a good    | Snoko and Shoko 2017                            |
| 1     |                                                 | rainfall season              | 1                                               |

| Abiotic indicators | Mean awareness index |                  |                 |         |  |  |
|--------------------|----------------------|------------------|-----------------|---------|--|--|
| codes              | Gadag district       | Belgaum district | Uttara Kannada  | Overall |  |  |
|                    | (n=90)               | (n=90)           | district (n=60) | (n=240) |  |  |
| А                  | 55.56                | 57.78            | 45.56           | 59.58   |  |  |
| В                  | 44.44                | 46.67            | 41.11           | 49.58   |  |  |
| С                  | 34.44                | 34.44            | 37.78           | 40.00   |  |  |
| D                  | 38.89                | 35.56            | 23.33           | 36.67   |  |  |
| Е                  | 64.44                | 66.67            | 47.78           | 67.08   |  |  |
| F                  | 40.00                | 40.00            | 22.22           | 38.33   |  |  |
| G                  | 43.33                | 45.56            | 16.67           | 39.58   |  |  |
| Н                  | 36.67                | 42.22            | 22.22           | 37.92   |  |  |
| Ι                  | 63.33                | 64.44            | 42.22           | 63.75   |  |  |
| J                  | 28.89                | 28.89            | 17.78           | 28.33   |  |  |
| K                  | 48.89                | 55.56            | 50.00           | 57.92   |  |  |
| L                  | 66.67                | 66.67            | 46.67           | 67.50   |  |  |
| М                  | 44.44                | 54.44            | 30.00           | 48.33   |  |  |
| Ν                  | 55.56                | 55.56            | 42.22           | 57.50   |  |  |
| 0                  | 61.11                | 55.56            | 42.22           | 59.58   |  |  |
| Р                  | 53.33                | 53.33            | 40.00           | 55.00   |  |  |
| Q                  | 33.33                | 33.33            | 21.11           | 32.92   |  |  |
| R                  | 27.78                | 27.78            | 16.67           | 27.08   |  |  |
| S                  | 23.33                | 23.33            | 22.22           | 25.83   |  |  |
| Т                  | 22.22                | 22.22            | 11.11           | 20.83   |  |  |
| U                  | 72.22                | 72.22            | 52.22           | 73.75   |  |  |
| V                  | 72.22                | 72.22            | 52.22           | 73.75   |  |  |
| W                  | 23.33                | 23.33            | 11.11           | 21.67   |  |  |
| Х                  | 54.44                | 55.56            | 38.89           | 55.83   |  |  |
| Y                  | 33.33                | 33.33            | 22.22           | 33.33   |  |  |
| Z                  | 36.67                | 36.67            | 25.56           | 37.08   |  |  |
| AA                 | 63.33                | 63.33            | 35.56           | 60.83   |  |  |
| AB                 | 28.89                | 28.89            | 17.78           | 28.33   |  |  |
| AC                 | 21.11                | 21.11            | 11.11           | 20.00   |  |  |
| AD                 | 66.67                | 66.67            | 44.44           | 66.67   |  |  |
| AE                 | 66.67                | 61.11            | 44.44           | 64.58   |  |  |
| AF                 | 63.33                | 63.33            | 45.56           | 64.58   |  |  |
| AG                 | 55.56                | 55.56            | 41.11           | 57.08   |  |  |
| AH                 | 71.11                | 73.33            | 48.89           | 72.50   |  |  |
| AI                 | 64.44                | 64.44            | 44.44           | 65.00   |  |  |
| AJ                 | 44.44                | 50.00            | 33.33           | 47.92   |  |  |
| AK                 | 55.56                | 55.56            | 33.33           | 54.17   |  |  |
| AL                 | 48.89                | 51.11            | 35.56           | 50.83   |  |  |
| AM                 | 51,11                | 51,11            | 32.22           | 50.42   |  |  |

 Table 2

 Awareness of abiotic factor indicators in rainfall prediction among the farmers

F-test results for the awareness of abiotic factor indicators in rainfall prediction

| GROUPS            | Sum of   | df  | Mean     | F value  | P value | F critical |
|-------------------|----------|-----|----------|----------|---------|------------|
|                   | squares  |     | square   |          |         | value      |
| Between the group | 11434.4  | 2   | 5717.199 | 33.63522 | 3.3E-12 | 3.075853   |
| Within the group  | 19377.33 | 114 | 169.9766 | ]        |         |            |
| Total             | 30811.73 | 116 |          |          |         |            |

| Awareness      | Gadag district     | Belgaum district    | Uttara Kannada       | Overall         |
|----------------|--------------------|---------------------|----------------------|-----------------|
| categories     | (n=90)             | (n=90)              | district (n=60)      | (n=240)         |
| Very High      | -                  | -                   | -                    | -               |
| (> 75% index ) |                    |                     |                      |                 |
| High           | A,E,I,L,N,O,P,U,V, | A,E,I,K,L,M,N, O,P, | K,U,V                | A,E,I,K,L,N,    |
| (50-75% index) | X, AA, AD, AE, AF, | U,V, X,AA, AD,AE,   | ( 7.69%)             | O,P,U,V, X, AA, |
|                | AG,AH, AI,         | AF,AG, AH,AI, AJ,   |                      | AD,AE,AF,AG,    |
|                | AK,AM (48.72%)     | AK,AL,AM            |                      | AH,AI,AK,AL,    |
|                |                    | ( 58.97%)           |                      | AM ( 53.85%)    |
| Medium         | B,C,D,F,G,H,J,K,M  | B,C,D, F,G,H,       | A,B,C, E,I, L, M, N, | B,C,D,F,G,H,    |
| (25-50% index) | , Q,R,Y,Z, AB,     | J,Q,R,Y, Z, AB      | O,P,X,Z, AA,         | J, M,Q,R,S,Y,Z, |
|                | AJ,AL (41.02%)     | ( 30.77%)           | AD,AE, AF,AG,        | AB,AJ ( 38.46%) |
|                |                    |                     | AH, AI,AJ, AK,       |                 |
|                |                    |                     | AL,AM (58.97%)       |                 |
| Low            | S,T,W,AC (10.26%)  | S,T,W,AC (10.26%)   | D,F,G,H,J,Q,R,S,T,   | T,W,AC          |
| (<25% index)   |                    |                     | W,Y,AB,AC            | ( 7.69%)        |
|                |                    |                     | ( 33.33%)            |                 |

 
 Table 3

 Overall distribution of Abiotic Indicators of Rainfall Prediction in the different categories of Awareness index among the farmers

Table 4

Relevancy of abiotic factor indicators in rainfall prediction among farmers of North Karnataka

| Abiotic indicators codes |                | Mean re          | elevancy index  |         |
|--------------------------|----------------|------------------|-----------------|---------|
|                          | Gadag district | Belgaum district | Uttara Kannada  | Overall |
|                          | (n=90)         | (n=90)           | district (n=60) | (n=240) |
| A                        | 96.67          | 94.44            | 91.33           | 94.50   |
| В                        | 87.78          | 92.00            | 60.00           | 82.42   |
| С                        | 58.00          | 59.33            | 57.33           | 58.33   |
| D                        | 40.44          | 41.78            | 41.67           | 41.25   |
| Е                        | 84.89          | 63.33            | 77.33           | 74.92   |
| F                        | 40.89          | 40.22            | 43.67           | 41.33   |
| G                        | 59.33          | 60.44            | 36.67           | 54.08   |
| Н                        | 73.11          | 73.78            | 39.67           | 65.00   |
| Ι                        | 94.67          | 87.11            | 83.00           | 88.92   |
| J                        | 40.67          | 79.11            | 81.00           | 65.17   |
| К                        | 77.78          | 72.22            | 71.33           | 74.08   |
| L                        | 93.33          | 82.89            | 71.67           | 84.00   |
| М                        | 56.00          | 75.11            | 37.33           | 58.50   |
| N                        | 48.44          | 78.89            | 58.00           | 62.25   |
| 0                        | 84.67          | 60.00            | 57.00           | 68.50   |
| Р                        | 66.00          | 75.56            | 58.00           | 67.58   |
| Q                        | 38.44          | 40.44            | 39.33           | 39.42   |
| R                        | 60.67          | 39.56            | 81.00           | 57.83   |
| S                        | 40.89          | 40.67            | 52.33           | 43.67   |
| Т                        | 70.00          | 76.44            | 68.33           | 72.00   |
| U                        | 83.11          | 85.11            | 90.00           | 85.58   |
| V                        | 78.22          | 70.22            | 63.33           | 71.50   |
| W                        | 82.67          | 84.00            | 64.67           | 78.67   |

| Х  | 56.67 | 88.22 | 82.00 | 74.83 |
|----|-------|-------|-------|-------|
| Y  | 60.89 | 84.44 | 62.00 | 70.00 |
| Z  | 46.89 | 40.89 | 66.00 | 49.42 |
| AA | 83.78 | 78.00 | 78.33 | 80.25 |
| AB | 36.44 | 40.00 | 58.00 | 43.17 |
| AC | 53.11 | 59.78 | 40.67 | 52.50 |
| AD | 87.33 | 87.33 | 58.33 | 80.08 |
| AE | 93.56 | 60.22 | 67.33 | 74.50 |
| AF | 45.78 | 40.44 | 65.67 | 48.75 |
| AG | 79.11 | 93.33 | 79.00 | 84.42 |
| AH | 87.33 | 88.22 | 74.00 | 84.33 |
| AI | 85.33 | 72.89 | 56.33 | 73.42 |
| AJ | 62.22 | 64.44 | 59.00 | 62.25 |
| AK | 85.56 | 88.89 | 65.67 | 81.83 |
| AL | 80.89 | 68.89 | 69.67 | 73.58 |
| AM | 88.67 | 83.56 | 75.00 | 83.33 |

F-test results for relevancy of abiotic factor indicators of rainfall prediction

| GROUPS            | Sum of squares | df  | Mean     | F value | P value | F critical |
|-------------------|----------------|-----|----------|---------|---------|------------|
|                   |                |     | square   |         |         | value      |
| Between the group | 835.1885       | 2   | 417.5943 | 1.39541 | 0.25193 | 3.075853   |
| Within the group  | 34115.97       | 114 | 299.2629 |         |         |            |
| Total             | 34951.15       | 116 |          |         |         |            |

 Table 5

 Overall distribution of abiotic indicators of rainfall prediction in the different categories of relevancy rated by the farmers

| Relevancy      | Gadag district       | Belgaum district   | Uttara kannada   | Overall         |
|----------------|----------------------|--------------------|------------------|-----------------|
| categories     |                      |                    | district         |                 |
| Very High      | A,B,E,I,K,L,O,U,V,W, | A,B,I,J,L,M,N,     | A,E,I,J,R,U,X,   | A,B,I,L,U,W,AA, |
| (> 75% index ) | AA,AD,AE,AG,AH,      | P,T,U,W,X,Y,       | AA,AG (23.08 %)  | AD, AG, AH,     |
|                | AI,AK,AL,AM (48.72   | AA, AD,AG,AH,      |                  | AK,AM           |
|                | %)                   | AK,AM (48.72 %)    |                  | (30.77 %)       |
| High           | C,G,H,M,P,R,T,X,Y,   | C,E,G,H,K,O,V,     | B,C,K,L,N,O,P,S, | C,E,G,H,J,K,M,N |
| (50-75% index) | AC, AJ (28.20 %)     | AC, AE,AI,AJ,AL    | T,V,W,Y, AB, AD, | ,O,P,R,T,V,X,Y, |
|                |                      | (30.77 %)          | AE,AF, AH,AI,AJ, | AC, AE,AI,      |
|                |                      |                    | AK,AL,AM         | AJ,AL           |
|                |                      |                    | ( 58.97 %)       | ( 51.28 %)      |
| Medium         | D,F,J,N,Q,S,Z, AB,   | D,F,Q,R,S,Z,AB, AF | D,F,G,H,M,Q, AC  | D,F,Q,S,Z,AB,   |
| (25-50% index) | AF (23.08 %)         | ( 20.51%)          | (17.95%)         | AF (17.95 %)    |
| Low            | -                    | -                  | -                | -               |
| (<25% index)   |                      |                    |                  |                 |

Paper received on 30.10.21 Accepted on 15.11.21

#### REFERENCES

- Anju R and B.P. Bonny, 2019. Indigenous knowledge based abiotic indicators used in weather prediction by farmers of Wayanad, Kerala, India. *Indian J. Tradit know*,18(3): 565-572.
- Chhabra V. and A.A. Haris, 2014. Nakshtra based rainfall analysis and its impact on rabi crops yield for Patna, Bihar. SchJ Agric Vet Sci, 1(4): 168-172.
- Didal V. K., Brijbhooshan1 Todawat A. and Choudhary K., 2017. Weather forecasting in India: A Review. International. J. Curr Microbiol App Sci., 6(11):577-590.
- Galacgac E. S. and C.M. Balisacan, 2009. Traditional weather forecasting for sustainable agro forestry practices in Ilocos Norte province, Philippines, *Forest Ecol Management*, 257:2044-2053.
- Kanani P. R and A. Pastakia, 1999. Participatory meteorological assessment and prediction based on traditional beliefs and indicators in Saurashtra. *Eubios J. Asian and International Bioethics*, 9: 1-19.
- Kolawole O., D. P. Wolski, B. Ngwenya and G. Mmopelwa, 2014. Ethnometeorology and scientific weather forecasting: Small farmers and scientists' perspectives on climate variability in the Okavango delta, Botswana. *Climate Risk Management*, 4(5): 43–58.
- Mapfumoa P., F. Mtambanengwea and R. Chikowob, 2015. Building on indigenous knowledge to strengthen the capacity of smallholder farming communities to adapt to climate change and variability in southern Africa, *Climate and Development*
- Mbewe M., A. Phiri and N. Siyambango, 2019. Indigenous knowledge systems for local weather predictions: a case of Mukonchi Chiefdom in Zambia. *Envt and Natu Resources Res,* (2):16-26.
- Netshiukhwi G.Z, K. Stigter and S. Walker, 2013. Use of traditional weather/climate knowledge by farmers in the southwestern free state of South Africa: agro meteorological learning by scientists, 4: 383-410.
- Orlove B., C. Roncoli, K. Merit and A. Majugu, 2010. Indigenous climate knowledge in southern Uganda: the multiple components of a dynamic regional system, *Climatic Change*,100: 243–265.
- Rautela and Karki, 2015. Weather forecasting: traditional knowledge of the people of Uttarakhand Himalaya. J. Geo Envi and Earth Sci Inter, 3(3):1-14.
- Ravi Shankar K., P. Maraty, V. R. K. Murthy and Y. S. Ramakrishna, 2008. Indigenous Rain Forecasting in Andhra Pradesh. Director, Central Research Institute for Dryland Agriculture, Santoshnagar, Saidabad P.O., Hyderabad –59.
- Rengalakshmi Raj, 2011. Linking traditional and scientific knowledge systems on climate prediction and utilization. M. S. Swaminathan Research Foundation Chennai, India.
- Risiro J., D. Mashoko, T. Doreen Tshuma and E. Rurinda, 2012. Weather forecasting and indigenous knowledge systems in Chimanimani district of Manicaland, Zimbabwe. J. Emerging Trends in Edu Res and Policy Studies (JETERAPS), 3(4): 561-566.
- Roudier P., B. Muller, P. d'Aquino, C. Roncoli, M. A. Soumaré, L. Batté and B. Sultan, 2014. The role of climate forecasts in smallholder agriculture: Lessons from participatory research in two communities in Senegal, *Climate Risk Management*, 242-55
- Santosh T. H and G.K.N. Chhetry, 2012. Agro-biodiversity management related ITKs in North-Eastern India. J. Biology, Agri and Healthcare, 2(6):83-93.
- Shoko and Shoko,2017. Indigenous weather forecasting systems: a case study of the abiotic weather forecasting indicators for wards 12 and 13 in Mberengwa district Zimbabwe. *Asian J. Soci Sci*, 9(5):285-297.
- Sivaprakasam S. and V. Kanakasabai, 2009. Traditional almanac predicted rainfall A case study, *Indian J. Tradit know*, 8(4):621-625.